

Intelligent Assistants for Flexibility Management
(Grant Agreement No 957670)

D3.8 Revised automated flexibility management module

Date: 2021-06-30

Version 1.0

Published by the iFLEX Consortium

Dissemination Level: PU - Public

Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under Grant Agreement No 957670

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 2 of 40 Submission date: 2021-06-30

Document control page

Document file: D3_8_Revised_automated_flexibility_management_module.docx
Document version: 1.0
Document owner: VTT

Work package: WP3 Artificial Intelligence for forecasting and automated flexibility management
Deliverable type: DEM - Demonstrator, pilot, prototype

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Jussi Kiljander (VTT) 2022-04-15 Initial ToC based on the D3.7
0.2 Jussi Kiljander (VTT) 2022-05-10 Major updates to section 4
0.3 Jussi Kiljander (VTT) 2022-05-17 Major updates to section 5
0.4 Jussi Kiljander (VTT) Janne

Takalo-Mattila (VTT), Dušan
Gabrijelčič (JSI)

2022-06-20 Minor updates in sections 3, 4 and 5

0.5 Jussi Kiljander (VTT), Dušan
Gabrijelčič (JSI)

2022-08-05 Updates to section 5.

0.9 Jussi Kiljander (VTT) 2022-08-12 Internal review ready version
1.0 Jussi Kiljander (VTT) 2022-08-18 Final version submitted to the European

Commission

Internal review history:

Reviewed by Date Summary of comments

Markus Taumberger 2022-08-15 Accepted with minor corrections.
Dušan Gabrijelčič 2022-08-15 Accepted with minor modifications.

Legal Notice

The information in this document is subject to change without notice.

The Members of the iFLEX Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the iFLEX Consortium shall not be held liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing, performance, or
use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely
the views of its authors. The European Commission is not liable for any use that may be made of the
information contained therein.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 3 of 40 Submission date: 2021-06-30

Index:
Abbreviations .. 4

1 Executive summary ... 5

2 Introduction .. 6
2.1 Purpose, context and scope .. 6
2.2 Main changes compared to D3.7 ... 6
2.3 Content and structure .. 6

3 Overview ... 8
3.1 Relation to use cases .. 8
3.2 Relation to the functional architecture of the iFLEX Framework ... 9
3.3 Second phase focus .. 10

4 Methodology and approach .. 11
4.1 Functional architecture .. 11
4.2 Monte-Carlo Three Search for optimal control with hybrid models 13

5 Implementation ... 16
5.1 Overview .. 16

5.1.1 Software architecture ... 16
5.1.2 Use cases .. 21
5.1.3 Interface provided by the Automated Flexibility Management module 23

5.2 Instantiations .. 28
5.2.1 Instantiation in the Finnish pilot ... 28
5.2.2 Instantiation in the Greek pilot ... 29
5.2.3 Instantiation in the Slovenian pilot ... 30

6 Conclusions .. 33

List of figures and tables ... 34
6.1 Figures ... 34
6.2 Tables .. 34

7 References .. 35

8 Appendix: Jira requirements .. 36
8.1.1 [IF-107] FN-AFM-05 Optimize flexibility locally (self-consumption, consumer load

reduction) Created: 30/Jul/22 Updated: 31/Jul/22 .. 36
8.1.2 [IF-72] FN-AFM-04 Optimize flexibility based on prices (implicit demand response)

Created: 15/Jun/21 Updated: 31/Jul/22 .. 37
8.1.3 [IF-71] FN-AFM-03 Activate offered flexibility Created: 15/Jun/21 Updated:

14/Feb/22 Resolved: 14/Feb/22 ... 38
8.1.4 [IF-70] FN-AFM-02 Flexibility potential Created: 15/Jun/21 Updated:

14/Feb/22 Resolved: 14/Feb/22 ... 39
8.1.5 [IF-69] FN-AFM-01 Provide baseline forecasts Created: 15/Jun/21 Updated:

14/Feb/22 Resolved: 14/Feb/22 ... 40

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 4 of 40 Submission date: 2021-06-30

Abbreviations

AI Artificial Intelligence
AFM Automated Flexibility Manager
ANN Artificial Neural Networks
API Application Programming Interface
BEMS Building Energy Management Systems
CEM Customer Energy Manager
DR Demand Response
DRL Deep Reinforcement Learning
DRMS Demand Response Management System
DSO Distribution System Operator
ESCO Energy Service Company
HEMS Home Energy Management System
HVAC Heating, Ventilation and Air Conditioning
ICT Information and Communications Technology
ML Machine Learning
MPC Model Predictive Control
MLP Multilayer Perceptron
MTC Machine Type Communication
MV Medium Voltage
MVP Minimum Viable Product
RES Renewable Energy Sources
RL Reinforcement Learning
VPP Virtual Power Plant
WP Work Package

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 5 of 40 Submission date: 2021-06-30

1 Executive summary

This deliverable presents the second iteration of the Automated Flexibility Management (AFM) module. The
AFM module is a key component of the iFLEX Assistant. It is responsible for evaluating flexibilities to
market/aggregator module and optimizing energy management within the consumer premises. The goal for
this deliverable is to document the second phase specification and implementation of the AFM module, its
interfaces with other modules, and insights into different optimal control approaches.

The approach and methodology for implementing the AFM module is based on applying Artificial Intelligence
(AI) technologies together with optimal control methods. Instead of typical AI-based decision-making
approaches that learn control policies directly the idea is to apply model-based planning and control where
machine learning is applied together with physics-based modelling to learn accurate and robust models of the
consumer (includes people and their premises). These models form a digital twin of the consumer that can be
used to plan and optimize flexibility management.

The AFM control architecture is divided into two levels: Energy Planner and Controller(s). The Energy Planner
is similar to the Customer Energy Manager (CEM) introduced in the EN 50491-12-x standard series. It is
responsible for aggregating and optimizing the energy management at the consumer/building level without a
need for flexible asset specific details. To realize this the Energy Planner interacts with Controllers. Each
Controller is responsible for a logical group of devices providing a logical functionality (e.g., heating system).
In contrast to the Energy Planner that optimizes energy management at the whole building level, each
Controller just follows the load profiled assigned to it by the Energy Planner. Section 4 describes the approach
in more detail with the Monte Carlo Three Search Algorithm that is used for searching optimal control policies
with the models.

The AFM prototype for the second phase is implemented with Python programming language. The
implementation consists of four main classes: AFM, EnergyPlanner, Resource and MqttInterface. The AFM
class is the one that needs to be initialized to run the AFM module. It aggregates all the other classes and
provided the main run loop for the AFM module. The EnergyPlanner implements the Energy Planner
component of the AFM architecture. The Resource class implements Controller component. It also provides a
uniform interface to the Digital Twin Repository module enabling the EnergyPlanner to access baseline and
flexibility of the consumer. The main limitation of the current implementation is that the whole consumer needs
to be implemented as a single Resource. It should be noted that the Resource class implementation depends
on the consumer and assets available in the consumer premises. Therefore, the main module provides only
an abstract class that needs to be implemented and customized for different types of consumers. The
MqttInterface class implements the MQTT interface of the AFM module. MQTT based interface was selected
to allow lightweight communication protocol based on publish and subscribe communication pattern. The AFM
module is customed for three different pilot sites in Finland, Greek and Slovenia. These instances and their
differences are also briefly documented in this deliverable.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 6 of 40 Submission date: 2021-06-30

2 Introduction

2.1 Purpose, context and scope

The purpose of this deliverable is to document the second phase version of the Automated Flexibility
Management (AFM) module developed in the Task 3.4 - Automated decision-making and energy optimization.
The role of the AFM module is to provide automated and optimal flexibility management to maximize consumer
benefits. This end, it utilizes digital twins of the consumer to plan and optimize control policies in the digital
world and then select the best actions to be executed in the real world. This is achieved by using model
predictive control with the digital twins created using the hybrid modelling approach combining machine
learning with physics-based modelling (see D3.2 for more details). Furthermore, the control strategy involves
multiple layers of control, including rule-based control to ensure safe and robust control.

The initial version of the AFM module, documented in D3.7, focused on explicit demand response functionality.
The first version included the initial implementations of flexibility evaluation, control and also interface
specifications with other software modules. Evaluating flexibility and control was done via heuristic approach
whereas the energy consumption optimization and implicit demand response were not considered at the phase
one. Moreover, the first version was only customized and later deployed into the Finnish pilot focusing on
apartment building flexibility management.

In the phase two, we extend the initial prototype of the AFM module with new features including implicit demand
response and local control. The architecture is also updated to better match with the new Customer Energy
Manager Standard (i.e., EN 50491-12-x standard series). Moreover, in addition to the apartment building pilot,
that served as the development and validation platform, the AFM will be customized to support piloting also in
the Greek and Slovenian pilots. The main changes to the first version, documented in D3.7, are presented in
section 2.2.

2.2 Main changes compared to D3.7

The main changes in D3.8 compared to the initial version of the deliverable are listed below:

 Section 3: The use cases and second phase focus sections have been updated.

 Section 4: The approach section has been updated with description of the Monte Carlo Three Search
algorithm used for model predictive control (MPC) with the Digital Twin Repository (DTR). Moreover, the
overall architecture control architecture description of the Automated Flexibility Manager has been revised
based on the experience obtained in the phase 1.

 Section 5.1:

o The software implementation of the AFM has been refactored to better align with the EN 50491-
12-x standard series and especially the new EN 50491-12-2 standard released in April 2022. The
documentation of the implementation has been also revised and complemented with UML class
diagram and API documentations.

o The flexibility management interface of the AFM module has had a major update since the first
version. The baseline and flexibility forecast has been combined into one interface that provides
all relevant data in a single message. The combined payload has been streamlined and several
new parameters have been also added, including data on the flexible capacity and activated
flexibilities at different time periods. New interface has been also added for accessing data about
the device schedules via the MQTT interface. Finally, the serialization format for the payloads has
been updated. The new format is easier to encode and is also easily interpretable by humans.

 Section 5: The AFM instantiations section has been updated with new implementations for the Slovenian
(section 5.2.2) and Greek (section 5.2.3) pilots. Additionally, the implementation for the Finnish pilot
(section 5.2.1) has been revised based on the experiences and limitations encountered during the pre-
piloting phase.

2.3 Content and structure

This deliverable is structured as follows:

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 7 of 40 Submission date: 2021-06-30

 Section 3 provides an overview, mapping the contents of the deliverable to the use cases and to the

iFLEX architecture.

 Section 4 introduces the main methods and approaches applied in the work and presents the logical
control architecture for the AFM module.

 Section 5 details the implementation of the Automated Flexibility Management module, outlining the
software implementation, interfaces and real-world instantiations of the AFM module in the pilots.

 Section 6 concludes the deliverable.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 8 of 40 Submission date: 2021-06-30

3 Overview

3.1 Relation to use cases

The use cases of the iFLEX project are documented in D2.1 - Use cases and requirements. Based on the use
cases and system level requirements, component specific requirements have been defined for different
functional components of the iFLEX Framework. Four high level requirements have been specified for the
Automated Flexibility Management (AFM) component documented in this deliverable. The requirements are
related to all three of the high-level requirements. The following list introduces the AFM specific requirements
and maps them to the Primary Use Cases (PUC):

 FN-AFM-01 - Provide baseline forecasts, related to PUC-8
 FN-AFM-02 - Flexibility potential, related to PUC-8
 FN-AFM-03 - Activate offered flexibility, related to PUC-9
 FN-AFM-04 - Optimize flexibility based on prices (implicit demand response), related to PUC-9
 FN-AFM-05 - Optimize flexibility locally (maximize self-consumption), related to PUC-10.

The requirements in iFLEX are managed via Jira tool that provides methods for creating, prioritising,
scheduling and monitoring requirements. Figure 1 illustrates how the requirements are managed in Jira. The
full list of current requirements is presented in the Appendix.

Figure 1: AFM requirements captured in the project’s Jira tool.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 9 of 40 Submission date: 2021-06-30

3.2 Relation to the functional architecture of the iFLEX Framework

Automated Flexibility Management module is at the centre of the iFLEX assistant framework, as is depicted in
Figure 2. The main responsibilities of the module are:

 Forecasting on status and energy consumption of the building.

 Evaluation potential flexibilities on both electricity and district heat vectors.

 Optimization building demand-response with respect to energy price, CO2 emissions etc.

 Production of control signals to BEMS/HEMS according to the activated flexibility or optimized load
plan.

Forecasting is done by utilizing Digital Twin repository, which contains, as the name implies, all models related
to the system. These models provide forecasts on energy loads, flexibility and response of flexible assets with
respect to various control inputs. The models are documented in detail in D3.2 - Revised Hybrid Modelling
Module. Communication with BEMS/HEMS is done via Resource Abstraction Interface (RAI), which is
documented in D4.2 - Revised Resource Abstraction Interface. This interface also provides access to external
data sources, such as weather and CO2 emissions data. Additionally, the AFM module communicates with
the end-user (through end-user interface, see D3.5 - Revised Natural User Interfaces) for receiving user-
defined comfort and/or consumption preferences as well as request approval on changes to baseline
consumption. Finally, activation of flexibilities is received from Aggregator and market interface, documented
in D4.5 - Revised Market and Aggregation Interface Module.

Figure 2. Functional view of the iFLEX assistant with Automated Flexibility Management module highlighted.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 10 of 40 Submission date: 2021-06-30

3.3 Second phase focus

In the first phase, the AFM module was designed and implemented to provide automated flexibility
management for the apartment building, where the flexibility is obtained from the building’s heating ventilation
and air conditioning (HVAC) system. In the second phase, the goal is to generalize the approach and replicate
it for the single-family houses in the Greek and Slovenian pilots. To this end, the AFM architecture and
implementation are fully revised. In the Greek pilot, the flexibility will be provided mainly by the boilers. In
Slovenia, the flexibility comes from the building’s heating system supplied by a heat pump. To this end, the
goal is to generalize the AFM module implementation so that it is able to provide baseline load and flexibility
forecasts and execute automated explicit control initiated by the aggregator. New type of optimization
algorithm, namely Monte Carlo Three Search is also implemented to improve the brute force method
implemented for phase 1. Moreover, the AFM module will be extended with implicit control mechanism to
enable reduction of peak load and improve energy efficiency at the apartment building level.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 11 of 40 Submission date: 2021-06-30

4 Methodology and approach

4.1 Functional architecture

The functional architecture of the Automated Flexibility Manager is depicted in Figure 3. The figure presents
the internal architecture of the AFM module and the other iFA functional components interacting with the AFM
module. The AFM consist of two types of components: Energy Planner and Controller.

Figure 3: Functional view of the Automated Flexibility Management module.

There is a single Energy Planner component for each AFM/iFA. It is responsible for:

1) Aggregating and optimizing flexible assets within the consumer premises.

2) Delivering baseline and flexibility forecast to Aggregation and Market interface.

3) Reacting to price, incentive, and explicit control signals to maximize consumer benefits while meeting
their preferences.

4) Informing each Controller about the flexible asset specific load profiles the asset should follow.

The Energy Planner utilizes MPC based approach for optimizing the energy and flexibility management within
consumer premises. The Digital Twin Repository (revised version documented in D3.2) provided the models
utilized for searching optimal load profile for each flexible asset. The optimality of the load plan is measured
by a reward (or cost function), which depends on the market setting and end-user preferences. Additionally,
the Energy Planner can utilize models for inflexible loads and local generation from RES generation to optimize
the load profiles. A formal representation of the Energy Planner’s objective is presented in (1). The functions
𝑓, 𝑓 and 𝑓ௗ are represented with the hybrid models provided by the Digital Twin Repository.

There is a single Controller for each flexible asset (or logical group of flexible assets) within the consumer
premises. Each controller is responsible for following the individual load plan provided by the Energy Planner.
The optimization problem presented here can be labelled as a load following problem, which in standard
optimization problem form can be presented as

Automated flexibility management module

 Energy Planner

Controller

Digital Twin Repository

Plan optimizer

Predicted
percepts

Action
 proposals

Baseline load plan

Load
profile

Load tracking
optimizer

Flexibility evaluator

Flexibility potential

Current state

Action
 proposals

Predicted
percepts

Control commands

Flexibility activation

Current state

A
g
gr
e
ga
ti
o
n
 &
 M

ar
ke
t
in
te
rf
ac
e
s

Weather
 forecast

Weather
forecast
interface

Flexible asset
 constrains

Flexible asset
 constrains

Preferences

Advices

Energy & network tariffs

Rule‐base
verification

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 12 of 40 Submission date: 2021-06-30

min
భ,…,

൫𝐸௧ െ 𝐸௧ ൯
ଶ

ே

௧ୀ!

𝑠. 𝑡. 𝑠௧ ൌ 𝑓ሺ𝑠௧ିଵ,𝑎௧ିଵሻ
𝑠 𝑠் 𝑠௫

𝐸௧ ∈ 𝑠௧ ,

where 𝐸௧ is the energy in the load plan, 𝐸௧ is the energy consumption predicted by the model 𝑓, and 𝑠௧ is the
state of the system including the energy consumption and user comfort. This can be solved in many ways, for
example if 𝑓 is a continuous function, convex optimization algorithms such as quadratic programming can be
used (Bianchini et al., 2016; West et al., 2014). However, if the control horizon is short and control space
limited, a brute force (guess and check) method will suffice.

Depending on control frequency and resource dynamics the Controller can be implemented either with
traditional reactive control mechanisms such as Proportional-Integrative-Derivative (PID) control or with more
complex predictive control approach utilizing the models provided by the Digital Twin Repository. Important
part of each Controller is also a rule-based control system that ensures safe and reliable operation of the
system in case AI-based control is unsure of its decision or is otherwise compromised.

In addition to these two components the energy management system (EMS), interfaced via the Resource
Abstraction Interface of the consumer premises, is an important part of the control architecture. The EMS is
responsible for ensuring the normal operation, i.e. operating range, of the system and also translates more
high-level control (e.g. temperature set point) signals into actuator control signals. An example of this could be
the controller inside a heat pump that turns the pump on and off while maintaining a desired temperature. In
addition, it will maintain its parameters in operational range even by overriding incoming control signals if
necessary. Typically, a Proportional-Integral-Derivative (PID) controller is used, which uses feedback
mechanism to minimize error between desired set point and measured process variable.

Two fundamental approaches can be recognized for Artificial Intelligence based optimal control, namely model-
free and model-based optimal control. In model-free control, as the name implies, there is no dynamics model
to simulate states from. A popular technique is to use reinforcement learning in which the agent learns to
control the system through interaction with the environment, bearing similarities with human learning. With the
rise of neural networks, the agent used today is typically a neural network, in which case the technique is
labelled as deep reinforcement learning (DRL). Among different DRL algorithms, the most popular for DR
control is Q-learning (Sutton & Barto, 1998), which has been battle-tested in many scenarios (Chen et al.,
2018; Patyn et al., 2018; Ruelens et al., 2017; Ruelens et al., 2015). In Q-learning, the agent learns a function,
labelled as Q-function, that estimates the value of an action in a given state (Figure 4). It does this by exploring
the system by doing different actions and observing different reward-action pairs and then updating the value
function using the following equation iteratively:

𝑄௪ሺ𝑠௧,𝑎௧ሻ ← 𝑄ௗሺ𝑠௧ ,𝑎௧ሻ 𝛼 ቆ𝑟௧ 𝛾max

𝑄ሺ𝑠௧ାଵ,𝑎ሻ െ 𝑄ௗሺ𝑠௧ ,𝑎௧ሻቇ,

where 𝑠௧ is the state, 𝑎௧ is the action, 𝛼 is the learning rate and 𝛾 is the future rewards discount factor. In
essence, the new value of Q-function is obtained by adding the total net reward scaled by the learning rate to
the previous value.

Figure 4. Q-learning algorithm.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 13 of 40 Submission date: 2021-06-30

In contrast to model-free algorithms, model-based control techniques rely on dynamics model, which is used
to simulate different control scenarios. This optimal control problem for DR can be presented in general level
as (Kiljander et al., 2021):

max
భ,…,

𝑟ሺ𝑠௧ ,𝑎௧ሻ

்

௧ୀଵ

𝑠. 𝑡. 𝑠௧ ൌ 𝑓ሺ𝑠௧ିଵ,𝑎௧ିଵሻ 𝑓൫𝑠௧ିଵ,൯ 𝑓ௗ൫𝑠௧ିଵ,൯
 𝑠 𝑠௧ 𝑠௫ ,

(1)

where r is the reward function, 𝑠௧ is the state of the system, and 𝑎௧ is the action. The 𝑠௫ and 𝑠represent
possible constrains such as the minimum and maximum values for indoor temperature. The 𝑓, 𝑓 and 𝑓ௗ
represent models for flexible resources, power generation and inflexible demands, respectively. The dynamics
models 𝑓, 𝑓, 𝑓ௗ can be any functions, from simple heuristics to deep neural networks. However, the choice of
the models also dictates the possible algorithms that can be used to solve the problem. Generally, the
optimization algorithms can be divided into gradient-based and gradient-free methods. Gradient-based
methods are usually faster and also can (mathematically) guarantee an optimal solution but are notoriously
difficult to use with neural network models. This is mainly due to the exploding and vanishing gradient problem
(Pascanu et al., 2013). Gradient-free methods, such as genetic algorithms and particle swarm optimization
(Kusiak et al., 2014; Ma & Wang, 2011; Tang & Xu, 2011), do work well with neural networks and are used
extensively with them but lag on accuracy and efficiency compared to gradient-based methods. In addition,
model-based optimal control with neural networks typically employs a Nonlinear Model Predictive Control
(NMPC) approach, a form of closed-loop control, where the control algorithm uses feedback from the system
when making new decisions, as is shown in Figure 5. In practice, this means that a new optimized plan is done
at every time step with the latest information available, compared to doing it only once per period. An upside
of this approach is that it leads to more optimal control with a trade-off in plan predictability.

Figure 5. Model predictive control (MPC) method for model-based optimal control.

4.2 Monte-Carlo Three Search for optimal control with hybrid models

The model predictive control withing the AFM is realized with the Monte Carlo Tree Search (MCTS) algorithm
(Browne et al., 2012). MCTS is a simulation-based tree search algorithm that has become popular in Artificial
Intelligence (AI) solutions for game playing such as the AlphaGo (Silver, 2016), and AlphaZero (Silver et al.,
2018) developed by the DeepMind. These solutions combine MCTS with deep reinforcement learning (DRL)
to achieve state-of-the-art performance in Shogi, Go, and Chess.

To the best of our knowledge, the optimal control solution developed for AFM module is the first that applies
MCTS for demand-side flexibility management and building energy optimization. MCTS provides a lightweight
optimization framework that is a natural selection over derivative-based methods when the control inputs are
not continuous (e.g., the heat pump setpoints in this case). Furthermore, the main reason for using MCTS is
that it is suitable for the hybrid-models (documented in D3.1 and D3.2) that do not provide gradients to be used
for optimization.

In MCTS the search space of possible trajectories (alternative control actions at different time periods) is
represented as a tree. The goal is to find the most optimal set of actions that maximizes the reward. Each
execution is an iterative process that simulates many trajectories starting from the current state and running
to a terminal state (i.e., end of the optimization window). MCTS uses Monte Carlo simulation to estimate the
value of different states to guide the search toward optimal trajectories in the search space. In addition to
exploiting the trajectory that is currently perceived as the optimal one, MCTS continues to evaluate other
alternatives periodically. This balancing between the optimal strategy and search for alternative trajectories is
known as the ”exploration-exploitation trade-off“. There are many variants of MCTS proposed in the literature.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 14 of 40 Submission date: 2021-06-30

The current implementation of the algorithm for the AFM module comprises of following four steps: selection,
expansion, simulation, and backpropagation. (Sutton & Barto, 2018)

In the selection step the algorithm selects an optimal path in the search tree using a tree policy. The path
represents the optimal actions (e.g. HVAC set points) at different time periods. The search starts from the root
node (i.e., current state of the system) and continues until a leaf node is reached. A leaf is any node that has
a child node from which no simulation has been executed. An important part of the tree policy is to balance
the exploration and exploitation (i.e., how much to emphasize the most promising parts of the search space
versus exploring the tree for new regions which could provide even more value). The tree policy implemented
for the AFM modules uses the Upper Confidence Bound applied to Trees (UCT) (Kocsis & Szepesvári, 2006)
selection rule to balance exploration-exploitation trade off. The equation below specifies how the value for
each node is calculated. The node with the highest estimated value is selected.

𝑉 ൌ 𝑥 𝐶ට
୪୬൫൯

𝑉 is the estimated value of the node i, 𝑥 is the empirical mean value of the node i, C is a constant used for
balancing between exploitation and exploration, and 𝑛 and 𝑛 are the number of times the node i and its

parent have been visited, respectively. A typical value for the C in game playing is
ଵ

√ଶ
. This value is found to be

optimal when the rewards remain within the range [-1, 1]. To avoid the hyperparameter search for this variable
in the demand-side flexibility management we adopted the approach where the rewards are scaled so that
they remain within the range [-1, 1] as much as possible. The scaling factors were estimated by running a fixed
setpoint policy with historical data.

In the expansion step the search space (tree) is expanded with new node. This step is executed unless the
leaf node is the last time step in the optimization window. The new node is created by randomly choosing an
action (i.e., set point) and sampling a valid action with the hybrid models.

The purpose of the simulation step is to evaluate the value of the current state (and consequently its parents
states). To this end, a rollout from the new node, expanded in the previous step, is completed. The rollout
consist of sampling new states, using a simulation policy, until the end of the optimization window is reached.
Instead of using the typical random policy as the simulation policy, the AFM modules simulates with a fixed
policy based on the default control strategy (e.g. fixed set point for temperature). The fixed setpoint policy is
used, because it is more likely policy than random sampling and provides thus more accurate estimate for the
state values.

In the backpropagation step the empirical value (𝑥) of the nodes are updated or initialized based on the
results obtained from the simulation step. Only values for the tree are updated (i.e., no values for states beyond
the three that were visited during the simulations step).

Figure 6. Monte Carlo Tree Search. Reprinted from Image from An Introduction: Reinforcement Learning by Sutton &
Barto (Sutton & Barto, 2018)

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 15 of 40 Submission date: 2021-06-30

MCTS executes iteratively the abovementioned steps until the time allocated for optimization runs out. Every
iteration is started from the root node (i.e., current state of the system). Finally, the action with highest empirical
value to be executed from the root node is selected. After the environment transitions to a new state, MCTS is
run again starting with a tree containing any descendants of the new state (i.e., node) left over from the tree
constructed by the previous execution of MCTS.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 16 of 40 Submission date: 2021-06-30

5 Implementation

5.1 Overview

The AFM module is implemented with Python programming language. Code implementation follows object-
oriented programming paradigm and is overall designed with expandability in mind. Interfacing with other
modules is done via MQTT protocol, using the Eclipse Paho MQTT Python client library. Data between
software modules is transferred in Pandas DataFrame format, serialized to JSON notation. Various run
parameters are specified in a separate configuration file, where data polling, flexibility evaluation, planning and
control intervals are set as well as paths and MQTT topics are configured.

5.1.1 Software architecture

An Unified Modelling Language (UML) class diagram of the AFM implementation is depicted Figure 7. The
implementation consists of five classes: AFM, EnergyPlanner, Resource, MqttInterface and OperationTimer.

Figure 7: UML class diagram for the Automated Flexibility Manager.

The AFM class represents the whole Automated Flexibility Manager entity. To setup the AFM for a new
consumer an instance of this class is created. The documentation of the class is represented below.

class AFM(flex_resource, cfg=None)
Automated Flexibility Manager.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 17 of 40 Submission date: 2021-06-30

Parameters
flex_resource : resource.resource
Instance of the resource class.

cfg : dict
Config for the AFM instance.

Methods
def run(self, only_log_exceptions=True)

Main loop for the Energy Planner
Parameters

only_log_exceptions : bool
If true exceptions are only logged (not raised).

The EnerPlanner class represent the Energy Planner component of the AFM architecture. The documentation
of the class is represented below:

class EnergyPlanner(flex_resource, cfg=None)
Energy Planner component of the Automated Flexibility Manager.

Parameters
flex_resource : resource.resource
Instance of the resource class.

cfg : dict
Config for the AFM instance.

Methods
def fetch_consumption(self, now)
Fetches consumption data.
Parameters

now : Datetime
Current time.

Returns
dict - Dictionary of Dataframes (a DF for each energy vector). DF contains the consumption

data.

def forecast(self, now, activations)
Forecast the baseline and flexibilities.
Parameters

now : Datetime
Current time.

activations : dict
New DR activations. Dictionary of DataFrames for each energy vector.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 18 of 40 Submission date: 2021-06-30

Returns
dict - Dictionary of Dataframes (a DF for each energy vector). DF contains the forecast.

The Resource class represents the consumer. In the current implementation the whole consumer (i.e., people,
building, flexible assets, local production) is represented as a single resource. The Resource class implements
the controllers for each flexible asset. It also provides the EnerygPlanner with baseline and flexibility forecasts
by acting as an interface to the Digital Twin Repository. The implementation of this class is consumer specific
and only an abstract class (defining the interface) is implemented as part of the generic AFM library. The
documentation of the class is represented below:

class Resource
This is a blueprint for the flexible assets and baseline loads.
In the current implementation the whole consumer premises needs to be implemented as a single
resource. (i.e., not possible to divide the consumer into several resources).

Methods
def consumption(self, start, end)
Returns consumption between start and end in the market resolution.
Parameters

start : datetime.datetime
Start of the period.

end : datetime.datetime
End of the period.

Returns
DataFrame - DF with consumption columns for each energy vector, e.g. [ele_load, dh_down]

def control(self, now, fixed_load)
Sends control commands to the flexible resource to follow the load plan.
Parameters

now : datetime.datetime
Current datetime.

fixed_load : dict
Dictionary of fixed loads (series) for every energy vector. Fixed loads represent loads planned
by the AFM which need to be followed by the resource.

def forecast(self, now, start, end, fixed_load)
Forecasts the baseline and flexibilities.
Only down flexibilities are provided in the current version.
Parameters

now : datetime.datetime
Current datetime.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 19 of 40 Submission date: 2021-06-30

start : datetime.datetime
Start of the forecast period.

end : datetime.datetime
End of the forecast period.

fixed_load : dict
Dictionary of fixed loads (series) for every energy vector. Fixed loads represent loads planned
by the AFM which need to be followed by the resource.

Returns
DataFrame - Forecast represented as a dataframe with following columns
[_baseline, __down]

The MqttInterface class implements the MQTT interface of the AFM module. The documentation of the class
is represented below:

class MqttInterface(client_id, client, carrier, freq)
Parameters

client_id : str
The MQTT client identifier

client :
The MQTT client instance.

carrier : {'ele', 'dh'}
The energy vector/carrier.

freq : int
The sampling rate of the data shared via the interface.

Methods
def publish_forecast(self, now, forecast_df)
Publish baseline and flexibility forecast to MQTT.
Parameters

now : Datetime
Current time.

forecast_df : DataFrame
DataFrame containing the baseline and flexibility forecasts.

def publish_load(self, now, load_df)
Publishes the measured load info to the MQTT broker.
Parameters

now : Datetime
Current time.

load_df : DataFrame

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 20 of 40 Submission date: 2021-06-30

DataFrame containing the energy measurement.

def subscribe_activations(self)
Subscribes explicit demand response activation messages.

The OperationTimer class represents timers that are used to synchronize the operation of the Energy Planner.
The documentation of the class is represented below:

class OperationTimer(now, freq)

Parameters

now : datetime.datetime

Current time.

freq : int

Update frequency (sampling rate) of the timer.

Methods

def interval_passed(self, now)

Check whether the interval has passed.

Parameters

now : datetime.datetime

Current time.

Returns

bool

Boolean indicating whether the interval has passed.

def reset_timer(self, now)

Resets the time to start counting from now.

Parameters

now : datetime.datetime

Current time.

class Time(tz='UTC', update_freq=1, simulation=None)

This class is used to allow either simulated or real-time to be used.

Parameters

tz : str

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 21 of 40 Submission date: 2021-06-30

Timezone.

update_freq : int

Update frequency.

simulation : dict or None

Simulation specific data. None if timer is used for real-time operation.

Methods

def now(self)

Get the current time.

Returns

Datetime - Current datetime.

5.1.2 Use cases

5.1.2.1 Offer flexibility

Flexibility refers to the potential to deviate from a baseline load at different time periods. The baseline load in
turn is the power load that would ensue without explicit or implicit demand response. Flexibility can be used to
either increase or decrease consumers baseline load. The potential to decrease the baseline is called down
flexibility and the potential to increase up flexibility. The amount of down and up flexibility are presented more
formally in equations (2) and (3), respectively.

 𝐷 ൌ 𝐶
௦ െ min ሺ𝐶

௧ሻ (2)

 𝑈 ൌ max ሺ𝐶
௧ሻ െ 𝐶

௦ (3)

Where 𝐷 is the down flexibility and 𝑈 the up flexibility at time step 𝑖, 𝐶௦ is the baseline consumption and
𝐶௧ is the consumption obtained through DR control inputs. For simplicity reasons, we only consider the
maximum flexibility value for each direction (up or down) in each time step. Even still, calculating the maximum
amount of flexibility for each time step is not trivial. If we want to evaluate all possibilities, we would need to
calculate ∑ 𝑛

 options, where n is the number of control options, r is the length of the forecast and 𝑖 is the
current time step. In practice this exponential growth implies that for any forecasts longer than a couple of
steps it is impossible to use brute force (calculate all possible trajectories), so instead a heuristic or algorithm
is used to reduce search space. One option is to perform control only in the step that is being evaluated while
leaving the other as is. This approach reduces the number of iterations from ∑ 𝑛

 to 𝑟 ∗ 𝑛, which is much more
feasible to calculate in short time.

Figure 8 depicts the flexibility evaluation process that is initiated by a timer (the OperationTimer is omitted from
the figure for the sake of clarity). The EnergyPlanner first request the baseline load and flexibility from each
Resource (only one resource per site is supported in the current implementation). The Resource calls the
relevant models from the Digital Twin Repository to predict the baseline, minimum and maximum loads. This
information is then returned to the AFM class that calls the MqttInterface to send the flexibility and baseline
forecast to the Aggregation & Market Interface module.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 22 of 40 Submission date: 2021-06-30

Figure 8. Sequence diagram of the flexibility offering process.

5.1.2.2 Optimize schedule consider prices and/or incentives

The schedule optimization use case covers both implicit and explicit demand response. In both cases the
schedule optimization can be divided into two distinct parts: planning and control. The EnergyPlanner class is
responsible for the planning while the control is implemented by the Resource class (i.e., Controller is
embedded into the Resource class). The planning part is slightly different in implicit and explicit DR. The control
part, focusing on following the load plan specified by the EnergyPlanner, is executed in the same way in implicit
and implicit DR. Figure 9 illustrates the implicit DR optimization process.

Figure 9: Sequence diagram depicting the implicit DR optimization.

The optimization is initiated by a timer in the AFM class (OperationTimer class is omitted from the figure for
the sake of clarity) that synchronizes the implicit DR optimization at fixed intervals (defined in the AFM
configuration file). The EnergyPlanner class is the main responsible for planning the optimal schedules for
each Resource. It first fetches the energy and network tariffs from the A&M Interface and then request the
baseline and flexibility forecast from the Resource. How the Resource forecast and calculates the flexibility
depends on the type of resource. In this example the Resource first fetches user preferences from the user
interface component. Then it generates schedule proposals matching the user preferences and request load
profiles from the Digital Twin Repository (i.e., DTR) module. The EnergyPlanner then utilizes the baseline and
flexibility forecast to find optimal load profile for each Resource (remember that only one Resource is supported
in the current implementation). The optimal load profile is the one that minimizes the cost function. It should
be noted that the term cost refers to the total value of the cost function (consumer specific) and can in theory
include non-monetary parameters such as CO2 emissions.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 23 of 40 Submission date: 2021-06-30

Figure 10 represents the explicit DR optimization process. This example assumes that manual acceptance is
not required from the end-user in this case. From the AFM point of view the scenario is initiated by the
Aggregator and Market Interface. It utilizes the MQTT interface of the AFM module to notify about the explicit
DR activation. Next the AFM request the EnergyPlanner to optimize a new load profile that matches the new
flexibility activations. In this example this is done by requesting the Resource to forecast a load plan matching
the activations. Finally, the AFM notifies the A&M Interface about the flexibility activation. It should be noted
that the new schedule is not published to the End-user Interface at this point but instead during the Resource
control phase.

Figure 10: Sequence diagram illustrating explicit DR signal and schedule optimization.

The control part of the optimization process is represented in Figure 11. In the same way as the other
operations, the control is initiated by a timer in the AFM class. The AFM class then request the optimized load
plan from the EnergyPlanner and request the Resource to follow the load plan. The Resource class then
calculates the set point (control command) that provides the closest response to the optimized load plan. The
Resource could utilize the models in DTR to search for optimal set point but in this example is considered to
be simple enough so that this is not needed.

Figure 11: Sequence diagram illustrating the control process.

5.1.3 Interface provided by the Automated Flexibility Management module

Automated Flexibility Manager provides an MQTT interface for accessing forecasts and activating flexibilities.
This interface can be utilized e.g., by an aggregator. JSON is utilized for serializing the payloads. All
timestamps in the payloads are presented in ISO format. All loads are presented in kW and represent the
average load during the sampling period. Table 1 introduces the MQTT topics that form the AFM interface.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 24 of 40 Submission date: 2021-06-30

Table 1. MQTT topics of AFM interface.

Interface Topic Message

Flexibility potential afm/<ifa_id>/<energy_vector>/flexibility A

Explicit flexibility activation afm/<ifa_id >/<energy_vector>/activation B

Load measurement afm/<ifa_id >/<energy_vector>/load C

Flexible asset schedule afm/<ifa_id >/<energy_vector>/<asset_id>/schedule D

As can be seen from Table 1, there are following parameters in the MQTT topics: ifa_id and energy_vector.
The ifa_id parameter is a unique identifier for the iFLEX Assistant. The energy_vector specifies the energy
vector for associated flexibility forecast, activation and measurements. Currently supported energy vectors
include electricity (represented with keyword ele) and district heating (represented with keyword dh).

Figure 12. Examples of the MQTT topic instances.

Figure 13 presents an example of the Message A format. This serialization format was selected as it can be
easily extended with new parameters. It is also directly supported by Pandas data frame JSON serialization
methods so it is easy to implement in practise. The Message A consist of header and data fields. The header
field consists of sentAt, and freq fields documented in Table 2. The data field consist of a list of JSON object
literals with following attributes: timestamp, baseline, down, up, capacity, and allocated_flexibility. The
semantics of these attributes is presented in

Table 3. The down and/or up attributes can be omitted if flexibility to that direction is not provided by the given
AFM.

Table 2. Attributes of the Payload A header.

Parameter Description

timestamp The timestamp of when AFM sent the message.

freq Sampling rate of the data in minutes.

Table 3. Attributes of a JSON object literal contained in Payload A. List of these structures is stored in the data attribute
of the message.

Parameter Description

timestamp

Start time of the period that the forecast targets (ISO
format). End time can be calculated based on freq
parameter present in the message header.

baseline

Forecasted load of the metering point (e.g., building)
if the current control plan is followed. Flexibilities that
are activated will modify the baseline. The values are
represented in kW are refer to the average power
during the time period.

down
Down flexibility provided for the given time period
(kW). Down flexibility means reduction of the load

afm/hoas/ele/flexibility
afm/hoas/ele/load
afm/hoas/ele/activation
afm/hoas/dh/flexibility
afm/hoas/dh/load
afm/hoas/dh/activation
afm/hoas/ele/heat_pump/schedule

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 25 of 40 Submission date: 2021-06-30

with respect to baseline in the same forecast
message.

up

Up flexibility provided for the given time period (kW).
Up flexibility means increase of the load with respect
to baseline in the same forecast message.

capacity

The capacity (kWh) for the down flexibility in the
given period. The capacity means the total energy
down flexibility in the given period.

max_capacity
The maximum capacity (kWh) for the down flexibility.
The capacity for the up flexibility can be calculated
by subtracting capacity from the maximum capacity.

allocated_flexibility

Used to represent how much flexibility has been
allocated. The purpose of this parameter is mainly to
notify the aggregator on how much flexibility the AFM
estimates to be able to obtain. It should be noted that
this attribute does not provide any new information
that cannot be obtained by comparing different
forecasts (its purpose is mainly to provide all the
relevant information without the need to track
previous forecasts).The flexibility allocation is taken
into account in the baseline (i.e., the baseline is
modified with respect to the allocation) and this
attribute basically reflects the change compared to
the previous baseline forecast before the
modification.

Eight-hour forecast is illustrated in the example. Only down flexibility is presented in the example. In addition
to the baseline and down flexibility forecast, each timestamp contains an allocated_flexibility field, which
documents the flexibilities that will be activated by the AFM. The flexibility can be activated via the Flexibility
activation interface. Message B documents the activation payload.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 26 of 40 Submission date: 2021-06-30

Figure 13. Payload A: Baseline and flexibility forecast payload.

Figure 14 illustrates the Message B, which is used in Flexibility activation messages. It contains following attributes:
sentAt, startTime, endTime, and delta. The semantics of these attributes are elaborated in Table 4

Table 4. Attributes of the Payload B.

Parameter Description
sentAt The timestamp (ISO format) when AFM sent the message.
startTime The start time (ISO format) of the flexibility event.
endTime The end time (ISO format) of the flexibility event.

accepted
This flag (Boolean) is set if the user has accepted the event.
This is needed to inform the AFM that is should process an
event happening outside of the user preferences.

{"sentAt": "2022-05-07T20:00:00.436708+00:00",
 "freq": 60,
 "data": [
 {"timestamp": "2022-05-07T20:00:00.000Z",
 "baseline": 27.6585835829,
 "down": 27.6585835829,
 “up”: 0.0,
 "capacity": 257.3231131519,
 "allocated_flexibility": 0.0},
 {"timestamp": "2022-05-07T21:00:00.000Z",
 "baseline": 24.7266916867,
 "down": 24.7266916867,
 “up”: 0.0,
 "capacity": 107.4438195244,
 “max_capacity”: 107.4438195244,
 "allocated_flexibility": 0.0},
 {"timestamp": "2022-05-07T22:00:00.000Z",
 "baseline": 20.5121587026,
 "down": 20.5121587026,
 “up”: 0.0,
 "capacity": 82.7171278377,
 “max_capacity”: 82.7171278377,
 "allocated_flexibility": 0.0},
 {"timestamp": "2022-05-07T23:00:00.000Z",
 "baseline": 17.6667239807,
 "down": 17.6667239807,
 “up”: 0.0,
 "capacity": 76.0857834391,
 “max_capacity”: 76.0857834391,
 "allocated_flexibility": 0.0},
 {"timestamp": "2022-05-08T00:00:00.000Z",
 "baseline": 16.6905958938,
 "down": 16.6905958938,
 “up”: 0.0,
 "capacity": 73.4477026342,
 “max_capacity”: 73.4477026342,
 "allocated_flexibility": 0.0},
 {"timestamp": "2022-05-08T01:00:00.000Z",
 "baseline": 15.0639232279,
 "down": 15.0639232279,
 “up”: 0.0,
 "capacity": 72.5594715856,
 “max_capacity”: 72.5594715856,
 "allocated_flexibility": 0.0}]
}

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 27 of 40 Submission date: 2021-06-30

delta
Specifies the change to the power when compared to baseline
in the selected period. I.e., negative values indicate decrease to
the building’s load profile.

Figure 14. Payload B: Used in Flexibility activation messages.

Figure 15 presents an example payload for load measurement messages. It contains the same header field
(see Table 2) as Message A. The data attribute consists of a list of JSON object literals with timestamp and
load attributes.

Figure 15. Payload C: Used in Load measurement messages.

The Message D consists of a header field (with sentAt attribute) and a payload field called commands. The
commands attribute consists of a list of JSON objects whose parameters are described in Table 5,

Table 5. Attributes of the Message D.

Parameter Description
sentAt The timestamp of when AFM sent the message.

commands A list of command objects. Each command object contains a
start, end, and setpoint attributes.

start The start time of the command.
end The end time of the command.
setpoint The set point of the command.

An example for the Message D is depicted in Figure 16.

Figure 16. Example of the Message D, used in flexible asset schedule messages.

{"sentAt": "2022-05-01T14:32:41.864590+00:00",
 "startTime": "2022-05-01T11:00:00+00:00",
 "endTime": "2022-05-01T12:00:00+00:00",
 ”accepted”: True,
 "delta": -105.3111965137}

{"sentAt": "2022-05-01T01:00:58+00:00",
 "freq": 60,
 "data": [{"timestamp": "2018-02-17T23:00:00.000Z", "load": 110.0}]}

{
 "sentAt": "2022-05-24T13:57:24.918187",
 "commands": [
 {
 "start": "2022-05-24T13:57:24.918187",
 "end": "2022-05-24T17:57:24.918187",
 "setpoint": 0
 },
 {
 "start": "2022-05-24T17:57:24.918187",
 "end": "2022-05-24T18:57:24.918187",
 "setpoint": 1
 },
 {
 "start": "2022-05-24T18:57:24.918187",
 "end": "2022-05-24T20:57:24.918187",
 "setpoint": 0
 }
]
}

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 28 of 40 Submission date: 2021-06-30

5.2 Instantiations

5.2.1 Instantiation in the Finnish pilot

The apartment building consists of 90 residential apartments, each monitored for thermal comfort and air
quality. All apartments share infrastructure for heating and domestic water. In addition, other notable
(consumption related) infrastructure includes an elevator and a common sauna. The building is also equipped
with a building automation system, including a building energy management system (BEMS).

The flexibility is provided by a centralized heating system that is responsible for space heating and heating of
the domestic hot water (DHW). The flexible part is the space heating where the iFLEX Assistant

In practice, controlling heating and ventilation is done via actuating several components in the heating system,
including valves, water pumps and heat exchangers simultaneously. To simplify control options, these controls
are bundled into different control “modes” which are designed by human experts and stored in the Resource
Abstraction Interface and the BEMS. The space heating can be controlled in three main modes. First, the
space heating can be directly constrained by dropping the heating water temperature during a demand
response event. How much this restricts the space heating in percentages is an identifiable parameter of the
building’s digital twin. Please refer to D3.2 Revised hybrid-modelling module for further details on the digital
twin and modelling. Second, the heat pump can be turned off. This will put all the heat production (i.e., space
heating and heating of domestic hot water) responsibility for the district heating. Third, the ventilation can be
constrained during the DR event. When the ventilation is constrained, its power is reduced to 30% from the
maximum. This can be done only when the heat pump is also turned off. Detailed documentation of these
control points is provided in D4.2 - Revised Resource Abstraction Interface.

A simplified overview of the energy flows in the building is presented in Figure 17. In short, incoming heating
energy is coming from the district heating network and from electricity that is used to heat apartment air. Within
the system is an exhaust heat pump that captures energy from exhaust air back into apartment heating.
Additionally, there is a water boiler in the system.

Figure 17. Simplified view of heating energy flows in the pilot building. Red arrows represent energy inflows while blue

arrows indicate energy outflows.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 29 of 40 Submission date: 2021-06-30

A good selection of measurements is also available from the building. As with the control points, the full list of
measurements is found in deliverable D4.2, but the most important are listed below:

 Building level electricity consumption (1-minute sampling rate)

 District heating consumption (1-minute sampling rate)

 Average indoor temperature (5-minute sampling rate)

 Weather forecast data from Finnish Meteorological Institute (60-minute sampling rate)

Figure 18 visualizes the AFM instance to be deployed into the Finnish pilot in the phase 2.

Figure 18. Functional view of the AFM instantiation in the Finnish pilot.

The AFM module instance is configured to optimize the flexibility obtained from the heating system. It consists
of single controller, called Heating controller, and the common Energy Planner component. The Digital Twin
Repository consist of four types of models, including District heating baseline model, Electricity baseline model,
Heating system model and Indoor temperature model. The Weather forecast interface provides interface for
Finnish Meteorological Institute (FMI) weather forecast service. The Resource Abstraction Interface is
implemented as an oBIX Database with mappings to the BEMS and interfaces to receive weather and CO2
emissions data.

5.2.2 Instantiation in the Greek pilot

In the Greek pilot the iFLEX Assistants (and associated AFM components) are tailored for single family houses
in three locations: Athens, Thessaloniki and Volos. The flexibility in these households is provided by white
goods that can be controlled remotely. The main focus will be on water boilers that are controlled via a relay.
Additionally, appliance control via smart plugs will be investigated. The approach for demand side flexibility
with these types of assets is based on rescheduling the assets without compromising user preferences. Users
define their personal preference for asset schedule and the AFM component utilizes this to plan optimal
schedules. Figure 19 illustrates this process and depicts the user preferences and schedule allocated by the
AFM component. It also highlights the up and down flexibilities calculated based on the user preferences.

Automated flexibility management module

Heating controller

 Energy Planner

Digital Twin Repository

Plan optimizer

Predicted
percepts

Action
 proposals

Load
profile

Load tracking
optimizer

Flexibility evaluator

Flexibility potential

Current state

Action
 proposals

Predicted
percepts

Control commands

Electricity
baseline
model

Indoor
temperature

model

District
heating
baseline
model

Explicit flexibility activation

Current state

A
g
gr
e
ga
ti
o
n
 &
 M

ar
ke
t
in
te
rf
ac
e
s

Weather
 forecast Weather

forecast
interface

Flexible asset
 constrains

Flexible asset
 constrains

Heating
system
model

Energy & network tariffs

Rule‐base
verification

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 30 of 40 Submission date: 2021-06-30

Figure 19: Illustration of the flexible assets scheduling based on user preferences.

 Figure 20 illustrates a functional view of the automated flexibility manager component instantiated for
the Finnish pilot. The AFM component is tailored based on the Digital Twin Repository (DTR) component that
consist of three main models that are utilized by the AFM to plan and optimize flexibility management. These
models include Electricity baseline model, Boiler model, and Smart appliance model. The boiler and smart
appliance models are optional, and the actual model configuration depends on the flexible assets available in
the consumer premises. The Energy Planner component is identical to the AFM instances in the other pilots.
There is a controller for each flexible appliance in the consumer premises. In the example below a single
controller is deployed for controlling the boiler.

 Figure 20: Functional view of the AFM instantiation in the Greek pilot.

5.2.3 Instantiation in the Slovenian pilot

In the Slovenian pilot the iFLEX Assistant (iFA) is tailored to the settings of individual households in the pilot.
The households in the pilot are in Celje region, the D7.2 Revised Pilot Specification gives more details on
household regions’ properties. The primary source of flexibility in most households is a heating system. Some
of the heating systems are installed together with a storage boiler. The boilers are of various capacities, some
hold 900 or even up to 3000 litres of water. The household installations without a boiler rely on the household

Automated flexibility management module

Boiler controller

 Energy Planner

Digital Twin Repository

Plan optimizer

Predicted
percepts

Action
 proposals

Load
profile

Load tracking
optimizer

Flexibility evaluator

Flexibility potential

Current state

Action
 proposals

Predicted
percepts

Control commands

Electricity
baseline model

Smart
appliance
model

Explicit flexibility activation

Current state

A
g
gr
e
ga
ti
o
n
 &
 M

ar
ke
t
in
te
rf
ac
e
s

Flexible asset
 constrains

Flexible asset
 constrains

Boiler model

Energy & network tariffs

Rule‐base
verification

Schedule preferences

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 31 of 40 Submission date: 2021-06-30

building structure as a source of flexibility besides household inhabitants tolerance to change of indoor
temperature. Some of the households in the pilot have available RES generation in a form of a PV power plant.
More information on household installations is available in the D4.2 - Revised Resource Abstraction Interface.

The main focus in the second year pilot will be an ability of the household to self-optimise the household
consumption. Self-optimisation will combine the household sources of flexibility either with the PV generation,
if available at the household, or in combination with a tariff system to optimise the consumption according to
the price of the energy.

Figure 21: Functional view of the AFM instantiation in the Slovenian pilot.

The self-optimisation in the case of storage boiler/building structure flexibility and the PV generation will look
into utilising as much as possible of generated electricity for hearting of the house. The optimisation will utilise
a capacity of the storage to store the heat at the times of high generation. The heat will be realised when
needed, usually in the afternoon and in the evening, when outside temperatures drop. A brief example of such
scenario is presented in Figure 22. In the figure two days of consumption are presented. On the left hand side
a non-optimized day in January is shown. The self-consumption (denoted in sky-blue) is very low. The
production, in green, is not properly used. The consumption in red happens in the morning and in the afternoon
when the PV generation is no longer active. In the figure on the right-hand side an optimised day of
consumption in March is presented. The afternoon consumption is at large shifted to the time of generation.
The generation is much better utilised and afternoon consumption is more uniform than before.

The self-optimisation case as described needs the following data in at least one hour granularity from a Digital
twin repository, as is denoted in Figure 21:

 Electricity consumption prediction: based on electricity baseline model a prediction of the household
electricity consumption is needed for next 24 hours,

 Heating demand prediction: based on heating system model a heating demand of the household
needs to be provided for next 24 hours,

 Generation prediction: based on generation model a prediction of PV generation for next 24 hours
are needed,

 Indoor temperature prediction: based on indoor temperature model an indoor temperature prediction
for next 24 hours is needed,

 Weather prediction: weather prediction for next 24 hours is needed. The predictions are obtained
through weather forecast interface. Typical weather parameters needed are temperature and
radiation. Weather prediction is needed for other predictions and not for AFM operation directly.

Automated flexibility management module

Heating system controller

 Energy Planner

Digital Twin Repository

Plan optimizer

Predicted
percepts

Action
 proposals

Load
profile

Load tracking
optimizer

Flexibility evaluator

Flexibility potential

Current state

Action
 proposals

Predicted
percepts

Control commands

Electricity
baseline model

Indoor
temperature

model

Explicit flexibility activation

Current state

A
g
gr
e
ga
ti
o
n
 &
 M

ar
ke
t
in
te
rf
ac
e
s

Weather
 forecast Weather

forecast
interface

Flexible asset
 constrains

Flexible asset
 constrains

Heating
system model

Energy & network tariffs

Rule‐base
verification

Preferences

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 32 of 40 Submission date: 2021-06-30

Figure 22: Self-optimisation in Slovenian pilot example, household flexibility and PV generation

In a case of self-optimisation regarding the tariff changes the available flexibility is used to optimise the
consumption regarding the price of energy. The tariffs can be either static network tariffs or dynamic electricity
prices as are described in the deliverable the D4.5 - Revised Market and Aggregation Interface Module. In any
case the flexibility, either a storage boiler or household building structure thermal capacity, as described in
D3.2,, is used to consume the energy and store heat at the times when the energy prices are low and avoid to
consume energy at the time when the prices are high. In the case of network tariffs, the consumption is
scheduled over the night (between 22:00 and 6:00) and the heat is used over the day or even afternoons and
evenings, when the tariffs are high.

In both cases of self-optimisations a type of flexibility available plays a crucial role in automated flexibility
management implementation. In case of storage boiler the flexibility is more predictable and easier to exploit.
The boiler can store the heat for a longer period of a time. The flexibility depends on capacity of the boiler. In
the case when flexibility is obtained from household building thermal capacity the amount of flexibility can be
smaller, the digital twin models could need some identification time before the model is accurate enough and
the flexibility cannot be stored for a longer period of time. The automated flexibility management optimisations
need to take into account that such flexibility cannot be retained for a longer period of time like in case of the
storage boiler.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 33 of 40 Submission date: 2021-06-30

6 Conclusions

This deliverable documented the second phase prototype of the Automated Flexibility Management. The AFM
is a core functional component of the iFLEX Assistant. It optimizes energy management within the consumer
premises to maximize consumer benefits while offering the available flexibility to power grid and energy system
balancing.

The AFM module is based in innovative approach that combines AI technologies with optimal control methods.
The key idea in the approach is to apply model-based planning and control where ML is combined with physics-
based modelling to learn accurate and robust models of the consumers, their premises, including flexible
assets. The AI-based control algorithms such as the MCTS is then applied for finding optimal control policies.

The AFM control architecture consist of two types of components: single Energy Planner and one or more
Controllers. The Energy Planner is responsible for maximizing consumer benefits by orchestrating the
operation of individual Controllers. It plans the load profile for each Controller without a need to have detailed
knowledge about the flexible assets. Each Controller is then responsible for following the load profile assigned
by the Energy Planner.

The AFM prototype described in this deliverable is implemented with Python programming language. The
implementation consists of four core classes, including the AFM, EnergyPlanner, Resource and MqttInterface.
The AFM is the central class the aggregates all other classes to realize the AFM instance. The EnergyPlanner
realizes the Energy Planner component of the AFM architecture. The Resource class implements the
Controller component and also acts as an interface to the Digital Twin Repository utilized for model predictive
control. Only single resource per consumer is supported in the current prototype of the AFM module. The AFM
module provides MQTT based interface which is implemented by the MqttInterface class. MQTT based API
was chosen as it provides lightweight communication protocol based on publish and subscribe communication
pattern. The AFM module is tailored for three different types of pilot sites, located in Finland, Greek and
Slovenia.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 34 of 40 Submission date: 2021-06-30

List of figures and tables

6.1 Figures

Figure 1: AFM requirements captured in the project’s Jira tool. .. 8
Figure 2. Functional view of the iFLEX assistant with Automated Flexibility Management module highlighted.
 ... 9
Figure 3: Functional view of the Automated Flexibility Management module. .. 11
Figure 4. Q-learning algorithm. .. 12
Figure 5. Model predictive control (MPC) method for model-based optimal control. 13
Figure 6. Monte Carlo Tree Search. Reprinted from Image from An Introduction: Reinforcement Learning by
Sutton & Barto (Sutton & Barto, 2018) .. 14
Figure 7: UML class diagram for the Automated Flexibility Manager. ... 16
Figure 8. Sequence diagram of the flexibility offering process. ... 22
Figure 9: Sequence diagram depicting the implicit DR optimization. .. 22
Figure 10: Sequence diagram illustrating explicit DR signal and schedule optimization. 23
Figure 11: Sequence diagram illustrating the control process. ... 23
Figure 12. Examples of the MQTT topic instances. .. 24
Figure 13. Payload A: Baseline and flexibility forecast payload. ... 26
Figure 14. Payload B: Used in Flexibility activation messages. .. 27
Figure 15. Payload C: Used in Load measurement messages. .. 27
Figure 16. Example of the Message D, used in flexible asset schedule messages. 27
Figure 17. Simplified view of heating energy flows in the pilot building. Red arrows represent energy inflows
while blue arrows indicate energy outflows. .. 28
Figure 18. Functional view of the AFM instantiation in the Finnish pilot. .. 29
Figure 19: Illustration of the flexible assets scheduling based on user preferences. 30
Figure 20: Functional view of the AFM instantiation in the Greek pilot. .. 30
Figure 21: Functional view of the AFM instantiation in the Slovenian pilot. .. 31

6.2 Tables

Table 1. MQTT topics of AFM interface. .. 24
Table 2. Attributes of the Payload A header. ... 24
Table 3. Attributes of a JSON object literal contained in Payload A. List of these structures is stored in the
data attribute of the message. ... 24
Table 4. Attributes of the Payload B. ... 26
Table 5. Attributes of the Message D. ... 27

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 35 of 40 Submission date: 2021-06-30

7 References

Bianchini, G., Casini, M., Vicino, A., & Zarrilli, D. (2016). Demand-response in building heating systems: A
Model Predictive Control approach. Applied Energy, 168, 159-170.
https://doi.org/10.1016/j.apenergy.2016.01.088

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., Tavener, S.,
Perez, D., Samothrakis, S., & Colton, S. (2012). A survey of Monte Carlo tree search methods. In
IEEE Transactions on Computational Intelligence and AI in Games.

Chen, Y., Norford, L. K., Samuelson, H. W., & Malkawi, A. (2018). Optimal control of HVAC and window
systems for natural ventilation through reinforcement learning. Energy and Buildings.
https://doi.org/10.1016/j.enbuild.2018.03.051

Kiljander, J., Sarala, R., Rehu, J., Pakkala, D., Pääkkönen, P., Takalo-Mattila, J., & Känsälä, K. (2021).
Intelligent consumer flexibility management with neural network based planning and control. IEEE
Access, PP. https://doi.org/10.1109/ACCESS.2021.3060871

Kocsis, L., & Szepesvári, C. (2006). Bandit Based Monte-Carlo Planning. In (pp. 282-293). Springer Berlin
Heidelberg. https://doi.org/10.1007/11871842_29

Kusiak, A., Xu, G., & Zhang, Z. (2014). Minimization of energy consumption in HVAC systems with data-
driven models and an interior-point method. Energy Conversion and Management.
https://doi.org/10.1016/j.enconman.2014.05.053

Ma, Z., & Wang, S. (2011). Supervisory and optimal control of central chiller plants using simplified adaptive
models and genetic algorithm. Applied Energy, 88(1), 198-211.
https://doi.org/10.1016/j.apenergy.2010.07.036

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. 30th
International Conference on Machine Learning, ICML 2013,

Patyn, C., Ruelens, F., & Deconinck, G. (2018). Comparing neural architectures for demand response
through model-free reinforcement learning for heat pump control. 2018 IEEE International Energy
Conference, ENERGYCON 2018,

Ruelens, F., Claessens, B. J., Vandael, S., De Schutter, B., Babuska, R., & Belmans, R. (2017). Residential
Demand Response of Thermostatically Controlled Loads Using Batch Reinforcement Learning. IEEE
Transactions on Smart Grid, 8(5), 2149-2159. https://doi.org/10.1109/tsg.2016.2517211

Ruelens, F., Iacovella, S., Claessens, B. J., & Belmans, R. (2015). Learning agent for a heat-pump
thermostat with a set-back strategy using model-free reinforcement learning. Energies.
https://doi.org/10.3390/en8088300

Silver, D. (2016). AlphaGo. Nature. https://doi.org/10.1038/nature16961
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,

Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play. Science.
https://doi.org/10.1126/science.aar6404

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (Second ed.). The MIT Press.
http://incompleteideas.net/book/the-book-2nd.html

Tang, F., & Xu, G. (2011). Multi-objective optimization of HVAC system with an evolutionary computation
algorithm. Fuel and Energy Abstracts, 36. https://doi.org/10.1016/j.energy.2011.01.030

West, S. R., Ward, J. K., & Wall, J. (2014). Trial results from a model predictive control and optimisation
system for commercial building HVAC. Energy and Buildings, 72, 271-279.
https://doi.org/10.1016/j.enbuild.2013.12.037

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 36 of 40 Submission date: 2021-06-30

8 Appendix: Jira requirements

8.1.1 [IF-107] FN-AFM-05 Optimize flexibility locally (self-consumption, consumer load
reduction) Created: 30/Jul/22 Updated: 31/Jul/22

Status: Part of specification

Project: iFlex Project

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Functional Priority: Major

Reporter: Jussi Kiljander Assignee: Unassigned

Resolution: Unresolved Votes: 0

Labels: AFM

Rationale: The requirement comes mainly from the needs of the PUC 10: Increase self-balancing

through forecasting and automation.

Pilot Finland: Phase two

Pilot Greece: Not applicable

Pilot Slovenia: Phase two

 Description

The AFM needs to support energy management policies for local control. This focuses mainly on
maximizing self-consumption (Slovenian pilot) but reduction of consumer peak loads (investigated in the
Finnish pilot) is also covered by this requirement.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 37 of 40 Submission date: 2021-06-30

8.1.2 [IF-72] FN-AFM-04 Optimize flexibility based on prices (implicit demand response)
Created: 15/Jun/21 Updated: 31/Jul/22

Status: Part of specification

Project: iFlex Project

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Functional Priority: Major

Reporter: Jussi Kiljander Assignee: Jussi Kiljander

Resolution: Unresolved Votes: 0

Labels: AFM

Rationale: iFLEX Assistant needs to be able to optimize flexible assets schedule and/or setpoints

in order to reduce end-user costs.

Pilot Finland: Phase two

Pilot Greece: Not applicable

Pilot Slovenia: Phase two

 Description

The automated flexibility management module should provide mechanisms to optimize flexibility with
respect to dynamic tariffs, possible across different energy vectors.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 38 of 40 Submission date: 2021-06-30

8.1.3 [IF-71] FN-AFM-03 Activate offered flexibility Created: 15/Jun/21 Updated: 14/Feb/22 Resolved:
14/Feb/22

Status: Validated

Project: iFlex Project

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Functional Priority: Major

Reporter: Jussi Kiljander Assignee: Jussi Kiljander

Resolution: Validated Votes: 0

Labels: AFM

Rationale: Flexibility activation is required in implicit and explicit demand response.

Pilot Finland: Phase one

Pilot Greece: Phase two

Pilot Slovenia: Phase two

 Description

The automated flexibility management module should activate the offered flexibilities when requested via
the A&F interface (assumes flexibility activation is authorized by the end-user).

To activate the flexibility the AFM module needs to find an optimal control schedule by optimizing with the
model provided by the digital twin repository. Once optimal schedule is found the flexibility is activated by
modifying the local energy management system parameters.

 Comments

Comment by Jussi Kiljander [14/Feb/22]

The functionality is validated in the Finnish pilot.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 39 of 40 Submission date: 2021-06-30

8.1.4 [IF-70] FN-AFM-02 Flexibility potential Created: 15/Jun/21 Updated: 14/Feb/22 Resolved: 14/Feb/22

Status: Validated

Project: iFlex Project

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Functional Priority: Major

Reporter: Jussi Kiljander Assignee: Jussi Kiljander

Resolution: Validated Votes: 0

Labels: AFM

Rationale: Flexibility potential data is needed to provide more deterministic explicit demand

response.

Pilot Finland: Phase one

Pilot Greece: Phase two

Pilot Slovenia: Phase two

 Description

The automated flexibility management module should provide flexibility potential information to the A&M
Interface module. The flexibility potential should be calculated by comparing the minimum and maximum
loads to the baseline load profile at different time periods.

The length of the flexibility window and the frequency should be configurable.

 Comments

Comment by Jussi Kiljander [14/Feb/22]

The functionality is validated in the Finnish pilot.

 D3.8 Revised automated flexibility management module

Document version: 1.0 Page 40 of 40 Submission date: 2021-06-30

8.1.5 [IF-69] FN-AFM-01 Provide baseline forecasts Created: 15/Jun/21 Updated: 14/Feb/22 Resolved:
14/Feb/22

Status: Validated

Project: iFlex Project

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Functional Priority: Major

Reporter: Jussi Kiljander Assignee: Jussi Kiljander

Resolution: Validated Votes: 0

Labels: AFM

Rationale: Baseline load profile is required to estimate and validate the flexibility at individual

prosumer level. Prosumer/consumer specific baseline load profiles can be also used
to calculate aggregated load profiles at different levels of the power system.

Pilot Finland: Phase one

Pilot Greece: Phase two

Pilot Slovenia: Phase two

 Description

The automated flexibility management module should provide information about the baseline load profile
(including consumption and local production) of the prosumer/consumer.

 Comments

Comment by Jussi Kiljander [14/Feb/22]

The functionality is validated in the Finnish pilot.

